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Research projects

• Optimal targeting of interventions to reduce crop residue
burning

• Ethnic procurement (with Vasily Korovkin and Pasha
Andreyanov)

• Role of ethnic ties in Russian public procurement auctions more

• Estimating publication bias in observational studies
• Use newly available data since the study had been published to
re-run the same specifications

more
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Optimal targeting of
interventions to reduce crop
residue burning



Motivation

• Air pollution shown to have adverse effects on health (Deryugina
et al., 2019), productivity (Chang et al., 2016), and academic
achievement (Gilraine and Zheng, 2022)

• Crop residue (stubble) burning is an important contributor to air
pollution in some regions (e.g., northwestern India) (Liu et al.,
2018)

• Conditional payments to farmers proposed to reduce residue
burning (Jack et al., 2023)

• This paper: Given limited resources, which places should be
targeted for interventions to reduce air pollution?
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Overview

• Goal: Target the interventions into places where the greatest
impact can be achieved

• Modeling of two main aspects:
1. Harm of the air pollution

• On average, how much harm would additional emissions from a given
location cause?

• Depends on the weather patterns (wind direction, strength, etc.) and
spatial distribution of the population

• I will use an air pollution transport model (HYSPLIT) to estimate the
overall impact

2. Costs
• How much we would have to spend to reduce the pollution in a given
location?

• Need to model the response of farmers to an intervention
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Overview - Contributions

• Targeting: for a given budget, which villages should receive
intervention

• Optimal policy achieves twice the impact of random targeting but
only 2% greater impact than targeting locations with most burning

• Scaling up: What will be the average and marginal impacts if we
scale up the interventions

• Increase of budget from 1 to 10 mil. USD decreases the marginal
effects by ≈ 30%

• Gains from better predictions
• Predicting where will the burning occur is much more important
than weather forecasts
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Overview

• Mechanics of the modeling approach
• interventions −→ burned area −→ emissions −→ air pollution −→
welfare gain

• Inputs into the analysis
• Share of burned area, historical weather data, RCT results (Jack
et al., 2023), population distribution, ...

• Outputs of the analysis
• Optimal allocation (assignment of interventions to villages)
• Welfare gain associated with each allocation
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Outline

• Background and Literature Review
• Modeling Air Pollution Transport
• Problem Formulation
• Preliminary Results
• Extensions
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Background and literature review



Crop residue burning

• Cheap and fast way to clear land after harvest
• Mostly in areas with dual crop systems and mechanized
harvesting

• Dual crop system (e.g., for rice from June to October) might leave
little time between harvest and next sowing

• Mechanized harvesting leaves crop residue on fields, which
interferes with the sowing

• Potential solutions
• Specialized seeding machine (Happy Seeder)
• Speeding up decomposition of residue
• Manual removal of crop residue
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Literature review

• Effects of air pollution - optimal policy not considered
• Chang et al. (2016), Heft-Neal et al. (2018), Deryugina et al. (2019),
Graff Zivin et al. (2020), Heft-Neal et al. (2020), Gilraine and Zheng
(2022), and Pullabhotla et al. (2022)

• Optimal policy in environmental economics - novel context
• Blundell et al. (2020) and Assunção et al. (2022)
• Mbakop and Tabord-Meehan (2021) and Kitagawa and Tetenov
(2018)

• Crop residue burning - optimal policy not considered
• RCTs: Pant (2014) and Jack et al. (2023)
• Atmospheric science: Liu et al. (2018) and Kulkarni et al. (2020)
• Predictions using satellite data: Liu et al. (2020)

• Gains from more accurate predictions - novel context
• Rosenzweig and Udry (2019), Anand (2022), and Molina and Rudik
(2022)
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Modeling air pollution transport



Modeling air pollution transport

• HYSPLIT dispersion model
• Hybrid Single-Particle Lagrangian Integrated Trajectory model
• One of the most extensively used atmospheric transport and
dispersion models in the atmospheric sciences

• Applications include tracking and forecasting the release of
wildfire smoke, wind-blown dust, volcanic ash, and crop residue
burning (Stein et al., 2015)

• Main output of interest
• Source-receptor matrix: SRMij

• Fraction of emissions from source i that are transported into j
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Problem formulation



Definitions

• SRMij . . . fraction of emissions from source i that are
transported into j

• Ei . . . total mass of pollutants emitted from location i
• Pj =

∑
i SRMijEi . . . total air pollution concentration in i

• Lj = f(Pj) . . . per capita loss (harm) of exposure to Pj

• Nj . . . total population
• TL =

∑
j Lj · Nj . . . total population-weighted loss caused by air

pollution across all locations
• si . . . conditional payment amount, ui . . . share paid upfront,

xi . . . covariates
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Problem formulation I

min
si,ui

TL = min
si,ui

∑
j

LjNj, (1)

subject to budget constraint (where κi is compliance rate)∑
i

(uiri + (1 − ui)κi) sili ≤ M, (2)

equation for enrollment rate into the program ( details )

ri = ωBb(s = 0, xi, ui) + ωN (1 − b(s = 0, xi, ui)) , (3)

pollution loss function ( details )

Lj = f(Pj) = f(pb
j + p0

j ), (4)

source-receptor matrix decomposition of air pollution

pb
j =

∑
i

SRMijEi, (5)
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Problem formulation II

equation relating the emissions due to crop residue burning (Ei) to
the predicted share of land burned (bi(si, ui, xi)) and eligible land
area li ( details )

Ei = ϕb(si, ui, xi) · li, (6)

and predicted share of land burned ( details )

b(si, ui, xi) = g(si, ui, xi) (7)

( solving the model )
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Preliminary results



Preliminary results

• I focus on northwestern India where crop residue burning is
common

• I run simulations based on October and November weather data
for 56 different emission events from 2006 to 2019

• Regular grid of 441 source location
• Expected infant deaths computed for each location separately,
then interpolated on a finer grid

• MODIS satellite images for land cover and burned area
estimates on 500m resolution
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Cropland and burned area
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Infant deaths per ha of burned land - no interpolation
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Infant deaths per ha of burned land - interpolated
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Infant deaths per ha of burned land - only burned land
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Substantial differences in harm depending on location
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Targeting locations with most burning is nearly optimal
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How do conditional payments scale up?
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Scaling up - marginal effects (≈ ∆ USD 120,000 )
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Extensions



Gains from better predictions

• Policymaker faces uncertainty with respect to location of
burning in the absence of intervention and weather shocks
(among other sources of uncertainty)

• −→ realized impact of the program can be different from what was
planned

• Better predictions can reduce this uncertainty
• We can upper-bound these gains by computing ex-post optimal
allocations

• Results for 2017 suggest that the predictions of burned area are
more important than those of weather shocks

28



Gains from better predictions - burned area
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Gains from better predictions - weather shocks

30



Alternative (reduced form) approach

• Based on the results of Pullabhotla et al. (2022) who estimate
the effect of an additional km2 burned area within a 30 km
radius on infant mortality in the downwind direction

• HYSPLIT: Area burned→ mass emitted→ PM2.5 conc. → infant
mortality

• Reduced-form: Area burned→ infant mortality (within 30 km)
• Results on the same order of magnitude as HYSPLIT approach,
although with much higher variance

details
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Conclusion

• Targeting
• Optimal policy achieves twice the impact of random targeting but
only 2% greater impact than targeting locations with most burning

• Scaling up
• Increase of budget from 1 to 10 mil. USD decreases the marginal
effects by ≈ 30%

• Gains from better predictions
• Predicting where will the burning occur is much more important
than weather forecasts
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Other projects

• Ethnic procurement (with Vasily Korovkin and Pasha
Andreyanov)

• Role of ethnic ties in Russian public procurement auctions
• Large database of 20 million purchases with information on prices,
detailed product categories, bureaucrats etc.

• Ethnicity of bureaucrats and firm managers is predicted from
surnames using a specialized neural network

• Preliminary results show more evidence in favor of statistical
rather than taste-based discrimination more

• Estimating publication bias in observational studies
• Dependence of publication probability on the results can lead to
systemic bias

• Use newly available data since the study had been published to
re-run the same specifications

more
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Program enrollment rate I

• Program enrollment given by

ri = ωBb(si = 0, xi) + ωN (1 − b(si = 0, xi))

where ωB = P(Rip = 1|Bpi = 1, si = 0),
ωN = P(Rip = 1|Bpi = 0, si = 0), Rip is enrollment indicator, and
Bpi is burning indicator

• This allows for self-selection into the program based on demand
for burning

• Important for cost effectiveness of the program
• The higher the enrollment of farmers who would never burn their
fields, the lower the per enrollee benefits of the program

go back



Program enrollment rate II

• ωB and ωN can be estimated from experimental micro data
• For any convex interval B

P (bpi ∈ B,Rpi = 1|si ̸= 0) =ωB E [bpi|bpi ∈ B, si = 0]P (bpi ∈ B|si = 0)
+ ωN (1 − E [bpi|bpi ∈ B, si = 0])
P (bpi ∈ B|si = 0)

where bpi pre-treatment probability of burning
• All of the terms above (except ωB and ωN) can be estimated
from the data

• Choosing only two disjoint intervals B is sufficient for
identification of ωB and ωN, as it leads to a system of 2 linear
equations with 2 unknowns

go back



Pollution loss function

• I will only consider the effects on infant mortality
• I will use linear loss function as a default

• There is evidence supporting linear effect of PM2.5 concentration
on infant mortality (Heft-Neal et al., 2018)

• Substantial reductions in the computational complexity of the
optimization and allows greater robustness in specifying some of
the parameters (i.e., ψ0, ψ, p0

j , ϕ have no influence on the optimal
allocation of si)

• I will use estimates from Pullabhotla et al. (2022)

• Future work: alternative parametrizations of the loss function

go back



Burned area→ emissions

• We can apply decomposition used by Jain et al. (2014) and Liu
et al. (2020) to express ϕ as

ϕ = CY × RC × fDM × fCC × EF (8)

where CY is the crop yield (produced weight per a unit of area),
RC is the residue-to-crop weight ratio, fDM is the dry matter
fraction of the crop, fCC is the combustion completeness
(fraction of the dry matter burned), and EF is the emission
factor for the pollutant

• Using the estimates from the literature for rice paddy as the
crop and PM2.5 as the pollutant, we get ϕ ≈ 23772

go back



Modeling the treatment effect I

• Challenge: Extrapolate the treatment effect from the sample of
villages in the RCT (all of them had high pre-treat. burned land
share) to all villages in Punjab and Haryana

• My approach: Impose functional form assumptions and then
test sensitivity of the results

• Microfoundation of this approach more

go back



Modeling the treatment effect II

1. Get estimates of b(si = 0, xi) from ridge regression wit
pre-treatment data

2. Compute village specific treatment effect

β̂i = h(b̂(si = 0, xi), β̂, b̄RCT-control)

3. Compute the counterfactual burned cropland share under
treatment

b̂(si = 1, xi) = b̂(si = 0, xi)− β̂i

go back



Modeling the treatment effect III

• Possible forms of h(.):
1. Linear:

β̂i = b̂(si = 0, xi) ·
β̂

b̄RCT-control
2. Rectified linear:

β̂i =

β̂ for b̂(si = 0, xi) > β̂

b̂(si = 0, xi) for b̂(si = 0, xi) ≤ β̂

3. Logit:

β̂i = b̂(si = 0, xi)− σ
(
σ−1(b̂(si = 0, xi)) + β̂logiti

)
where

β̂logiti = σ−1
(

b̄RCT-control) + β̂
)
− σ−1 (b̄RCT-control))

and σ(x) = 1/(1 + exp−x) is the standard logistic function

go back



Treatment effect extrapolation



Histogram of share of burned cropland



Extrapolation and total loss



Microfounding the model

• Farmer with plot p in village i compares the profits from burning
(ΠB

pi) and not burning (ΠN
pi)

ΠB
pi −ΠN

pi = βsi + x′iγ + ϵpi

• ϵpi

• idiosyncratic shock that captures unobserved plot-level factors
• If of the type 1 extreme value distribution then the bi, can be
expressed as

b(si, xi) =
exp (βsi + x′iγ)

1 + exp (βsi + x′iγ)
, (9)

go back



Solving the model

• Linear loss and finite discrete interventions
• We can formulate the optimization as a multiple-choice knapsack
problem

• Fast algorithms for approximate solutions of multiple-choice
knapsack problem (OR-tools library in Python)

• Linear loss and continuous interventions
• Separable programming can be applied to obtain approximate
solutions by piecewise linearization of the nonlinear objective and
then using linear programming (Jensen and Bard, 2002, chapter
10.4)

go back



Reduced-form approach - details

• Wind direction data: NCEP reanalysis (Kalnay et al., 1996)
• October and November from 1948 to 2022

• Expected infant deaths are calculated as

Li =
∑

d
Nid · c · fid · βBA

where Li is the expected increase in infant deaths per an
additional burned hectare in location i, fid is the relative
frequency of historical monthly wind directions, Nid is
population living in a quarter in the direction d within the 30 km
radius of location i, c is the population share of infants (defined
as individuals under the age of one), and βBA is the effect of an
additional hectare burned on infant mortality.

go back



Reduced form approach



Reduced form approach - interpolated



Comparison - histogram (only locations with burned land)



Setting: Public Procurement, Bureaucrats, and Firms

• Public body—e.g., a hospital wants to buy antibiotics

1. This hospital needs to run an auction

2. Bureaucrats run auctions for this hospital

3. Hospital submits documentation including reserve price

4. Bureaucrat manages all paperwork & runs bid review

5. Firms submit their sealed bids

6. Hospital signs the contract with the winning firm

• Observe ethnic markers of bureaucrats & firm decision-makers

• Result 1: firms tend to win contracts with coethnic bureaucrats



Conceptual Framework: Taste-based Bias or Information

• Two competing stories: taste-based bias vs. screening

• First-price sealed-bid auction, firm payoff:

E[π(b)] = (b − c)Pr(win|b)

• Assumption: firms ex-ante symmetric
• Assumption: costs for project are i.i.d. draws from the same
distribution

• Tasted-based: add perturbation to probability of winning

E[π0(b)] = (b − c)(Pr(win|b) + ϵ) ⇒ ∂2E[π0(b)]
∂b∂ϵ > 0 ⇒ b0(ϵ, c) ↑

• I.e., bureaucrats select inefficient firms of same type



Illustration: Tasted-based Bid Distribution

• For generic distributions should lead to higher prices
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Conceptual Framework: Taste-based bias or Information

• First-price sealed-bid auction, firm payoff:

E[π(b)] = (b − c)Pr(win|b)

• Assumption: firms are asymmetric—either different costs or
screening

• Formally: assume different cost distributions or add information
frictions

• Screening: informally, add some perturbation to realized costs

E[π0] = (b − (c − ϵ))(Pr(win|b)) ⇒ ∂2E[π0]

∂b∂ϵ ⇒ b0(ϵ, c) ↓

• Fewer information frictions, or on average lower costs



Illustration: Information or Cost-Based Bid Distribution

• For generic distributions should lead to lower prices
• What is happening in the data?
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• Result 2: lower prices in coethnic pairs



Setting

• Russian procurement over the period 2014 through 2018:

• High ethnic diversity between regions

• More importantly, exploit within-organization variation in
bureaucrats

• Micro-level data on

• Procurement outcomes

• Firm decision-makers ethnicities

• Other bidding and firm outcomes

• Main findings

• Result 1: firms tend to win contracts with coethnic bureaucrats

• Result 2: lower prices in coethnic pairs—second-best?



Classification Algorithm

• Ethnicity predicted from surnames

• Memorial data—over 1 million individuals with ethnicity labels

• Pool ethnicities into five groups

• Not always the largest but the most salient features of last names

• E.g., Belorussian spelling “Russianized”—almost impossible to
differentiate

• Same for Yakuts, and some other groups—very hard

• Character-level bidirectional LSTM neural network

• Around 97% out-of-sample accuracy

• Calibration of predicted probabilities using isotonic regression



Main results

• Cross-sectional OLS results show
• Firms with managers co-ethnic with bureaucrats are more likely to
win

• The winning firms with co-ethnic managers receive lower prices

• Use switches of bureaucrats for identification:

Share of Minority Firmsit = αi + µt + β0 · Share of Min. Bureaucratsit + ϵit,

where the data is aggregated on organization i and time t level and
estimate

• Augment with lags and leads
• back



Baseline DiD
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Two-way FE coefficients

back



Baseline DiD - prices
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Motivation

• Publication of empirical studies depends on their results (effect
size, significance, …)

• This can lead to bias in the published estimates
• In experimental research, systematic replication studies were
conducted to identify

• However, no systematic replication of observational studies
done in economics

• This paper: Use newly available data since the study had been
published to re-run the same specifications



Existing methods for observational research

• Meta-analytic approach
• Assume that effect sizes and standard errors are independent
across all studies (very strong assumption)

• Kvarven et al. (2020) compared the bias-adjusted effect sizes
obtained using these methods are almost three times as large as
those from the systematic replication studies



Existing methods for observational research

• Using the distribution of z-statistics (Brodeur et al., 2020)
• Based on comparing the density of z-statistics around the
significance threshold

• Cannot detect p-hacking that would have large impact on the
z-statistics



Andrews and Kasy (2019) approach

• Uses systematic replication studies
• Assumes the true effects for the original study and replication
are draws from the same distribution

• Selection on publication identified up to scale from
fZ,Zr(b, a)
fZ,Zr(a, b) =

p(b)
p(a)



Systemic replication of observational studies - Economics

• One can also use newly available datasets (e.g., DHS surveys)
• Potential issue: the true effects might decline in time

• Estimate the decline in the true effects using multiple time periods
of the new data

• Focus on effects where the decline is likely to be small
• E.g., effects that according to the published research should persist
over 100 years

• Examples: Acemoglu et al. (2014) and Michalopoulos and
Papaioannou (2016)

back



Michalopoulos and Papaioannou (2016) table 2 - original



Michalopoulos and Papaioannou (2016) table 2 - replication



Acemoglu et al. (2014) table 5 - original



Acemoglu et al. (2014) table 5 - replication
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