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Abstract

I apply an air pollution transport model to compute the average population exposure to

pollution caused by crop residue burning across different locations in northern India. Using

these results together with satellite data on cropland fires, I propose how to optimally target

interventions to reduce crop residue burning in order to minimize the total harm caused by

the created air pollution subject to a given budget constraint. I develop a structural model

of farmers’ decisions, which I estimate using the experimental results of Jack et al. (2022), to

predict the effects and take-up of an intervention across villages. My preliminary results suggest

that the same mass of emissions can cause in expectation twice as many infant deaths depending

on the location even if we restrict ourselves only to areas where cropland was burned in the past.

Furthermore, I compute how the expected reduction in infant deaths varies with the budget size

of a policymaker.
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1 Introduction

Biomass burning is responsible for up to 15.4% of infant deaths at the country-level due to the air

pollution it creates and this share has been on the rise globally from 2004 to 2018 (Pullabhotla et

al., 2022). In addition to the heath effects, adverse impacts of air pollution on productivity (Chang

et al., 2016) and human capital (Graff Zivin et al., 2020) have been documented.

Many of the biomass fires are intentionally caused by humans. First, fire is often used to destroy

forests in order to transform the land for agriculture (Balboni et al., 2021) . Second, crop residue

burning (which is the main focus of this paper) is practiced by some farmers to quickly clear-up the

land after a harvest and prepare it for the next sowing (Abdurrahman et al., 2020). The problem

with crop residue burning is especially severe in northern India where it has been an important

contributor to air pollution during the late fall months (Kulkarni et al., 2020). There has been

various interventions proposed to incentivize farmers not to burn their land (Abdurrahman et al.,

2020). Most notably, Jack et al. (2022) conducted a RCT to evaluate a simple but potentially highly

scalable intervention: offering the farmers a payment conditional on not burning their land.

However, with crop residue burning being fairly widespread (which is the case for for northern

India, especially Punjab), a policymaker might not be able to implement a desired intervention in

all locations. In this paper, I will calculate how the policymaker should target the interventions

aimed to reduce crop residue burning across different locations to achieve the greatest reduction in

harm with the limited budget. The local weather patterns and unequal distribution of population

in space imply that the number of people exposed to the pollution might vary across the source

locations. I will use atmospheric models of air pollution transport to compute average exposure to

smoke emitted from different locations in northern India. Combining these results with population

density maps enables me to calculate the average number people affected by pollution depending

on the source location. Second, I will use a structural model of farmers decisions on crop residue

burning using the results of the RCT by Jack et al. (2022), in which the farmers received a payment

conditional on not burning their land, for calibration of key parameters. Together with satellite

data on fires on agricultural land, this model will give us estimates of the expected reduction of

stubble burning achieved by an intervention in a given location (which could be village or other unit
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of aggregation depending on the context).

2 Literature review

The impact of air pollution on economic, health, psychological, and political outcomes has been

studied extensively. Specifically, particulate matter pollution1 (PM2.5 and PM10) have been shown

to have adverse effects on health (Deryugina et al., 2019), productivity (Chang et al., 2016), human

capital (Graff Zivin et al., 2020), and academic achievement (Gilraine and Zheng, 2022).

The issue of crop residue burning in particular have also received increased attention in recent

years (see Abdurrahman et al., 2020 for a review). In atmospheric sciences, the main focus of the

work has been on quantifying the contribution of crop residue burning to overall air pollution (Nair

et al., 2020) and studying the chemical, physical and optical properties of the aerosols (Mishra and

Shibata, 2012; Ram et al., 2016). In economics and public health, the impact of stubble burning

on various outcomes has been examined. The air pollution caused by agricultural fires has been

shown to increase both infant and older-age mortality (He et al., 2020; Pullabhotla et al., 2022) and

decrease birthweight, gestational length, and in utero survival (Rangel and Vogl, 2019). Graff Zivin

et al. (2020) report that crop residue burning reduces performance at collage entrance exams in

China. Economic literature on intervention to reduce crop residue burning is much more limited.

Most relevant to this paper is the RCT by Jack et al. (2022) conducted in Punjab, India in which

payments were made to paddy farmers conditional on them not burning their fields. I describe the

RCT in greater detail in subsection 4.1 as its results will be used as an input for my analysis.

In contrast to the studies mentioned above, this paper is focused on optimal targeting of inter-

ventions to reduce crop-residue burning, which relate it more to the literature on optimal policies

in environmental economics. Assunção et al. (2019) estimate ex-post optimal assignment to “Pri-

ority Lists” which were municipalities in Brazil subject to more intense environmental monitoring

and enforcement to combat deforestation. The policy of Assunção et al. (2019) aims to minimize

total deforestation but in contrast to this paper they do not consider the effect of air pollution and

1Particulates (particulate matter) are microscopic particles suspended in the air (Seinfeld and Pandis, 2006, p. 97).
PM10 to particles that have a diameter smaller or equal to 10 µm whereas PM2.5 refers to particles with a diameter
smaller or equal to 2.5 µm. These particles are inhalable and can enter the blood stream and brain (especially PM2.5

since they tend to be not filtered out in lungs due to their small size) which can cause serious health problems.
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heterogeneity in its dispersion.

3 Modelling air pollution transport

I will use HYSPLIT average dispersion (HyADS) approach introduced by Henneman et al. (2019) for

modelling the spatial impact of air pollution. The HyADS approach is based on averaging the pol-

lution concentrations predicted by the HYSPLIT2 model, which is an air pollution transport model

developed and maintained by NOAA (Draxler and Hess, 1998; Stein et al., 2015) that computes

air parcel3 trajectories to determine the dispersion of pollution. In contrast to Chemical transport

models (CTMs), HYSPLIT abstracts away from simulating complex chemical processes in the at-

mosphere. While this might lead to less accurate predictions, it also makes HYSPLIT substantially

less computationally demanding. HYSPLIT model has been extensively used in the atmospheric

sciences. Its applications include tracking and forecasting the release of wildfire smoke (Rolph et al.,

2009), wind-blown dust (Ashrafi et al., 2014), volcanic ash (Stunder et al., 2007), and crop residue

burning (Liu et al., 2018). Henneman et al. (2021) shows that HyADS have normalized mean errors

between 20 and 28% in comparison with the CTMs predictions of PM2.5 source impacts of coal

power plants in the US.

For illustration, figure A3 shows the predicted concentrations by HYSPLIT for an emissions

event in which 2500 air parcels are released on October 6, 2019 at 9:00 AM. We can see that the

wind direction strongly influences the dispersion of the pollution (in this case dispersing it in the

south-east direction).

Main output of interest for our analysis is the source-receptor matrix (denoted as SRMij), which

describes the concentration of air pollution (in mass units per m3) in location j for pollutant emitted

from source location i under average weather conditions. Average weather conditions in this context

means those that are typical when crop residue burning occurs, which in northern India tends to

be October and November (for post-monsoon crop residue burning which is the main focus of this

paper). To obtain the source-receptor matrix for a typical crop residue burning event, I simply run

2The acronym HYSPLIT stands for Hybrid Single-Particle Lagrangian Integrated Trajectory.
3An air parcel is an imaginary body of air which can be assigned basic dynamic and thermodynamic properties of

atmospheric air.
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the simulations for many emission events with different starting dates and then average the results.

An emission events consists of releasing the same amount of emissions at the same time from many

source locations (for my preliminary results I use 121 source locations) spread over a regular grid.

The dispersion of the pollutants is then computed with the weather data for the given time period

while keeping track of the source location of the pollutants so that the source-receptor matrix can

be estimated. The technical details of the HYSPLIT simulations used for the preliminary results

are described in subsection A.1 in the appendix. Naturally, many simulations need to be run for an

accurate estimate of the source-receptor matrix which underscores the computational demands of

this project.

Once we have the source-receptor matrix SRMij , we can estimate the impact of emitting pol-

lution from different locations. Let Ei be the total air pollution emitted from location i and Pi

be the total air pollution concentration in i. By definition, we have that Pj =
∑

i SRMijEi, i.e.,

the total pollution concentration in j is a sum of the emission from all locations i weighted by the

corresponding source-receptor matrix entry. Let us further define Lj = f(Pj) to be loss (harm) to a

single person from being exposed to air pollution of concentration Pj . The total loss TL then simply

is the sum of the losses across all locations weighted by their population Nj , i.e., TL =
∑

j Lj ·Nj .
4

The impact of small change in emissions from i on total loss can be expressed as

∂TL

∂Ei
=

∑
j

∂Lj

∂Ei
Nj =

∑
j

∂f(Pj)

∂Pj

∂Pj

∂Ei
Nj =

∑
j

∂f(Pj)

∂Pj
SRMijNj .

Clearly, if a given intervention can achieve the same reduction in emissions at the same costs in all

locations then it is optimal to target the locations with the highest ∂TL
∂Ei

. Of course, this assumption

of uniform effects is not realistic and therefore I will introduce the the full model that takes into

account the heterogeneity of costs across locations in section 4.

We can also consider an even simpler case when the loss function is linear (f(P ) = ψ0 + ψ · P ).
4If there are heterogeneous effects of air pollution across individuals (due to e.g., richer households having financial

resources to invest into air purifiers), it might be desirable to take these into account when aggregating the loss
function. I will consider this in the future work. Nevertheless, the existing studies (Heft-Neal et al., 2018; Heft-Neal
et al., 2020) do not show large differences in the effects sizes by wealth levels.
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Then ∂TL
∂Ei

simplifies to

∂TL

∂Ei
= ψ

∑
j

SRMijNj = ψ · αi,

where the term αi ≡
∑

j SRMijNj is sometimes referred to as the source impact of i in the literature

(Henneman et al., 2021). We can see that under those circumstances, the source-receptor matrix and

population in each location become sufficient for determining the optimal allocation. This extreme

simplicity allows me to present some very preliminary estimates of the distribution of αi in section

5.

There is some evidence to support linear effects of PM2.5 concentrations at least in the case of

infant mortality (at least in the policy relevant ranges). In particular, Heft-Neal et al. (2018) shows

that higher order polynomials for the effect of post-birth exposure to PM2.5 concentrations on the

infant mortality are not statistically significant implying linear response function (nevertheless they

do find that the quadratic term for in utero exposure is statistically significant).

4 Model

4.1 Farmers responses to intervention

Now, I proceed to modelling the decision of farmers to understand how they would respond to

interventions incentivizing them not to burn their land. The main purpose of this model is to obtain

reasonable counterfactual estimates of the share of burned land with and without an intervention

for every location. I will use the results of the RCT by Jack et al. (2022) which involved offering

farmers a payment conditional on not burning their land to estimate the demand for burning using

a discrete choice model (in a spirit of Souza-Rodrigues, 2019).

Consider a farmer with a plot of land p used for winter cropping in a location i (which could be

a village or a square on a grid). There is a continuum of such plots in every location and a farmer

makes a separate decision whether or not to clear the crop residues by burning them. Let ΠB be the

value that farmer attains by clearing the land by burning and and ΠN be the value of the alternative
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(not burning). I will assume the following functional form

ΠB
pi −ΠN

pi = βsi + x′iγ + ϵpi

where si is amount of payment offered conditional on not burning and xi is a vector of location-level

characteristics including soil quality, share of farmers with tractors (obtained from 2011 Socioeco-

nomic and caste census), and the share of land burnt in a previous years. Finally, ϵpi is a idiosyncratic

shock that captures unobserved plot-level factors and is assumed to follow the type 1 extreme value

distribution. A plot will be cleared by burning (which I will denote by an indicator variable Bpi) if

the benefits exceed the costs, i.e., Bpi = 1
(
ΠB

pi > ΠN
pi

)
. It follows from the above that the share of

land cleared by burning in location in i, denoted as bi, can be expressed as

log

(
bi

1− bi

)
= βsi + x′iγ (1)

The coefficients in this equation can be estimated using OLS as has been typically done in the

literature (e.g., Pfaff, 1999; Souza-Rodrigues, 2019). For this, we will use the data from Jack et al.

(2022) who conducted a RCT in 171 villages in Punjab, India, in which they offered farmers varying

amounts of payments conditional on farmers not burning their fields. In addition to conditional

payment only, Jack et al. (2022) also included a treatment variant in which the farmers received

upfront (unconditional) payment upon accepting the contract to help alleviate potential liquidity

constraints and build trust. In this paper I do not model the difference between these two treatment

variants but it is an interesting area for future research. The full individual-level data from this

RCT are not yet available as of October 2022 but I use the aggregated results in a simplified model

as described in section 5.

Besides the treatment effect, the enrollment into the program and the nature of the self-selection

are important determinants of the cost-effectiveness of an intervention (Jack and Jayachandran,

2019). The higher the enrollment of farmers who would never burn their fields, the lower the per

enrollee benefits of the program are. In the extreme case, if the vast majority of farmers who enroll

in the program are those that would refrain from burning their fields even in the absence of the

intervention, then the cost-effectiveness of the program would be very small.
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To parsimoniously capture this effect, the model has only two groups that differ in their enroll-

ment rate. First, the plots that would be burned in the absence of the program have enrollment rate

ωB = P (Rip = 1|Bpi = 1, si = 0) where Rip is an indicator for enrollment and si = 0 corresponds

to absence of the program in the location i. Second, the plots that would not be burned in the

absence of the program have enrollment rate ωN = P (Rip = 1|Bpi = 0, si = 0). Note that ωB > ωN

implies that there is a positive correlation between the cost of enrollment and the cost of reducing

burning and hence lower cost-effectiveness. It simply follows from the above that the location-level

enrollment rate, ri, can then be expresses as

ri = ωBb(si = 0, xi) + ωN (1− b(si = 0, xi))

We can estimate ωB and ωN from experimental microdata of Jack et al. (2022) using a method

inspired by Jack and Jayachandran (2019). We first use plot-level data from the control group to fit

a flexible logit model to obtain estimates of the probability of burning conditional on pre-treatment

covariates b̂pi (i.e., the propensity to burn). Due to the random assignment of treatment with

respect to location, we should expect the the distribution of the propensities to burn in the control

and treatment locations to be the same (ignoring the sampling error). The comparison of the density

of b̂pi in the control locations to the corresponding density of those enrolled in the program in the

treated locations allows us identify ωB and ωN . Notice that for any convex interval B

P (bpi ∈ B|Rpi = 1, si ̸= 0) =ωB E [bpi|bpi ∈ B, si = 0]P (bpi ∈ B|si = 0)

+ ωN (1− E [bpi|bpi ∈ B, si = 0])P (bpi ∈ B|si = 0)

All of the terms above (except ωB and ωN ) can be estimated from the data. P (bpi ∈ B|Rpi = 1, si ̸= 0)

is the density of propensities to burn in a given interval for plots enrolled in the program, P (bpi ∈ B|si = 0)

is the corresponding density for all plots in the control, and E [bpi|bpi ∈ B, si = 0] is the expected

propensity to burn in the given interval in the control. Choosing only two disjoint intervals B is

sufficient for identification of ωB and ωN , as it leads to a system of 2 linear equations with 2 un-

knowns. However, with a finite number of observations, the estimates in the equations are subject

to sampling error and therefore it might be preferable to choose a higher number partitions and find
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the solution that minimizes the sum of least squared errors.

4.2 Problem formulation

We finally proceed to formulating the problem. I will consider a policymaker with a budget M who

chooses the level of the conditional payments si offered to farmers for not burning their fields in each

location i to minimize the total population-weighted loss caused by air pollution. In my formulation

mainly for computational reasons, the policymaker is choosing from a finite set of payment levels,

si ∈ {s̄1, . . . , s̄J} expressed as money units per hectare.5 Naturally, no intervention (i.e., s̄1 = 0) is

always included in this set.

The policymaker minimizes the total loss (TL), which is a sum of losses (Lj) for all locations j

weighted by their population Nj

min
si∈{s̄1,...,s̄J}

TL = min
si∈{s̄1,...,s̄J}

∑
j

LjNj , (2)

subject to the budget constraint(where li is the total area of eligible land in i and ri is the enrollment

rate in the program, and F are the fixed costs of implementing the intervention)

∑
i

risili + 1 (si > 0)F ≤M, (3)

the pollution loss function which specifies the harm by air pollution concentration Pj (which is

a sum of pollution concentration due to crop-residue burning pbj and other sources p0j )

Lj = f(Pj) = f(pbj + p0j ), (4)

the equation for source-receptor matrix decomposition of air pollution

pbj =
∑
i

SRMijEi, (5)

5In the RCT of Jack et al. (2022), the levels of the payments were {s̄1, s̄2, s̄3} = {0, 800, 1600} denominated in INR
per acre. Hence if a policymaker does not want to extrapolate the effect of the intervention beyond those actually
implemented in the experiment, he or she should only consider this set of values.
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the equation relating the emissions due to crop residue burning (Ei) to the predicted share of land

burned (b(si, xi)) and eligible land area li

Ei = ϕb(si, xi) · li, (6)

the predicted share of land burned given the conditional payment amount (si) and the covariates

(xi)

b(si, xi) =
exp (βsi + x′iγ)

1 + exp (βsi + x′iγ)
, (7)

and the equation for enrollment rate into the program (discussed in subsection 4.1)

ri = ωBb(s = 0, xi) + ωN (1− b(s = 0, xi)) . (8)

There are several key parameters and functional form assumptions that need to be specified.

First, the policymaker has to set the maximum budget size M . Second, the loss function for air

pollution needs to be defined. One of the main concerns with regard to crop residue burning is its

effect on mortality via increasing PM2.5 concentrations. In my main analysis, I will therefore focus

only on the effects on mortality.6 Regarding the functional form, linear loss (f(P ) = ψ0 + ψ · P )

substantially reduces the computational complexity of the optimization and allows greater robustness

in specifying some of the parameters (i.e., ψ0, ψ, p
0
j , ϕ have no influence on the optimal allocation of

si). Moreover, as discussed at the end of section 3, there is some evidence for a linear effect of PM2.5

concentration on infant mortality (Heft-Neal et al., 2018). Nevertheless, alternative parametrizations

for the effects on mortality have been proposed in the public health literature. In particular, Burnett

et al. (2014) suggests the following function form for the effect of PM2.5 concentration C on relative

risk of mortality RR:

RR(C) =


1 + α

[
1− exp

(
−γ (C − C0)

δ
)]

for C > C0

1 for C ≤ C0

(9)

6Other relevant effects of air pollution have been studied and documented (e.g., on productivity or human capital).
Nevertheless, these effects tend to be more context specific and less precisely estimated than the impact on mortality
and therefore I only consider mortality.
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C0 represents a minimum concentration above which there is evidence indicating health benefits of

PM2.5 exposure reductions. This parametrization has been used by several other studies as well

(e.g., Apte et al., 2015). Therefore I will consider both of these functional forms to assess the

robustness of the final allocations (although I might solve the model with the non-linear loss only

for a smaller number of aggregated locations if the computational demands are too high).

Third, the source-receptor matrix needs to be estimated. In this paper, I use the HyADS ap-

proach, which I described in greater details in section 3. Fourth, regarding the relationship between

a unit of area burned (in our case hectars) and the mass of pollutant emitted (measured in grams),

I will again rely on the existing literature in atmospheric science. In particular, I can apply decom-

positions used by Jain et al. (2014) and Liu et al. (2020) to express ϕ as

ϕ = CY ×RC × fDM × fCC × EF (10)

where CY is the crop yield (produced weight per a unit of area), RC is the residue-to-crop weight

ratio, fDM is the dry matter fraction of the crop, fCC is the combustion completeness (fraction of

the dry matter burned), and EF is the emission factor for the pollutant. Using the estimates of

these parameters from the literature (provided in table A1) for rice paddy as the crop and PM2.5

as the pollutant, we get ϕ ≈ 23772. Finally, I already described above how I would obtain the

predictions b̂i(si, xi) in the previous subsection.

4.3 Solving the model

With potentially large number locations and a non-convex objective function, solving the model

might be computationally challenging. However, in the case of linear loss and binary intervention

(i.e., each location can either receive or not receive an intervention), we can achieve substantial

speed-ups by reformulating the model as a knapsack problem7 (this is demonstrated in subsection

A.2 in the appendix). The knapsack problem is NP-Complete and the existing algorithms may,

in the worst case, take exponential time (Kellerer et al., 2004, p. 491). However, there is a fully

7The knapsack problem is a canonical problem in combinatorial optimization in which the goal is to determine
which items (each with its weight and value) to include in order to maximize the value of the included items while
not exceeding a given weight limit (the capacity constraint). For more details see Kellerer et al. (2004).
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polynomial-time approximation scheme based on dynamic programming that achieves polynomial

time in the number of items while controlling the desired approximation error (Kellerer et al., 2004,

p. 37). Moreover, the knapsack solvers are efficiently implemented in OR-tools library by Google.8

The runtime of the OR-tools knapsack solvers I used in section 5 on problems with 8 756 items

(villages) and rounding of values to 6 decimal places was in the order of second.

Furthermore, even in the case of linear loss and finite discrete interventions (in which we can

assign different levels of payment in each location chosen from a finite set of options), we can still

attain significant efficiency gains since the model can be formulated as a multiple-choice knapsack

problem. In the multiple-choice knapsack problem, the set of items is partitioned into classes and

only one item within a set can be chosen (Kellerer et al., 2004, p. 317). In our case the classes are

different types of the interventions (including no intervention) and the constraint enforces that only

one type of the intervention will be chosen in a given location. While the multiple-choice knapsack

problem is NP-hard, there again exists a fully polynomial-time approximation scheme (Kellerer et

al., 2004, p. 338).

Finally, the case of non-linear loss function poses even greater challenge. Nevertheless, there are

several heuristic algorithms that have been successfully applied to various optimization problems to

find approximate global maximum in a large search space most notably simulated annealing and

genetic algorithms (Mitchell, 1998). Simulated annealing methods tend to explore the space very

widely in early stages but tend to become more greedy in time (i.e., it tends to select points that are

close to currently best solution). Genetic algorithms keep a whole population of solution which are

probabilistically mutated, recombined, and discarded. In both cases, the constraint can be included

as a penalty into the objective function. Furthermore, regardless of the optimization algorithm

selected, the complexity of the problem can always be reduced simply by aggregating some of the

locations together and thus reducing the size of the search space.

8https://developers.google.com/optimization
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5 Preliminary results

Since the individual-level data from Jack et al. (2022) were not yet available as of November 2022,

I simplify the proposed model so that I can obtain some preliminary results even in the absence

of these data. First, I will only consider the case linear loss function and binary intervention. As

the intervention, I will consider 3 treatments9 evaluated by Jack et al. (2022): 1) the conditional

payment of INR 800 per acre with 25% of it paid out upfront, 2) the payment of INR 800 per

acre with 25% upfront 3) the payment of INR 1600 per acre with 0% upfront. Second, instead of

logit model, I will assume that each treatment will reduce the share of burned area by β across all

locations. Thus we can then express the share of burned area as

b(si) = (1− βsi)b
0
i

where si is an indicator for location i receiving intervention and b0i is the burned area share in the

absence of the intervention. As an estimate for b0i , I will use the satellite data estimates for the

year prior to the intervention. The estimate of β is calculates as the ratio of the treatment effect to

the average share of farmers burning land in the year prior to intervention. The estimated effect of

each treatment on burned area is taken from Table A4 in Jack et al. (2022) for the “Not burned,

Balanced Accuracy” outcome and the average share of farmers burning land is computed separately

for each location based on the MODIS satellite data estimates of cropland and burned land.

I then compute the expected costs of treatment type t in each location i as

costsit = (utrt + (1− ut)κi) stli

where st is the payment offered, ut is the share paid upfront, rt is the enrollment rate, li is the

total eligible land, and κi is the share of land belonging to farmers who complied with the program

(and therefore will receive the full payment) on the total eligible land. I took the estimates of

rt from Figure A4 in Jack et al. (2022). For calculation of κi I assumed the following formula

κi = βtb
0
i + 0.06333 (0.06333 was used to match the relationship between βtb

0
i and kappa in Figure

9I do not consider the conditional payment of INR 800 per acre with 0% upfront as its treatment effect (for the case
of burned land predictions with balanced accuracy ) was estimated to be negative and not statistically significant.
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A4 of Jack et al. (2022)). All cropland in location i (estimated using the MODIS land use data)

is assumed to be eligible for the program. Finally, I abstracted away from any monitoring or fixed

costs of the intervention.

The region of interest in this analysis is northwestern India (in particular states of Punjab and

Haryana) as crop residue burning is common practice here. Due to the computational demands of

the HYSPLIT simulations, I ran them only for 483 source location on a grid covering northwestern

India and parts of Pakistan. Figure A2 shows the spatial extent of the grid together with the the

cropland and burned area using the predictions from the MODIS satellite data for 2016 at 500m

resolution. The expected infant deaths per hectare of burned land are plotted in figure A3a. I then

applied bicubic interpolation to increase the resolution of the grid as depicted in figure A3b. Figure

A3c shows these interpolated values of the expected infant deaths only for the pixels with burned

land in 2019. Finally, figure A3d shows a histograms of these pixel values. These results imply that

burning land in locations close to large population centers of Delhi or Lahore can lead to more than

twice as many infant deaths as burning in more remote regions even we restrict ourselves only to

locations where crop residue burning occurred in the past. The wind patterns also seem to play

a role as the areas north-west from Delhi tend to have higher values than locations with similar

distance south of Delhi.

In policymaker’s problem described in section 4, the interventions can be assigned only at the

level of a “location” as the policymaker cannot offer different contracts to farmers within the same

location. I define locations in this setting as villages as delineated in the 2001 census map data from

Meiyappan et al. (2018). I restrict the analysis to villages in Indian states of Punjab and Haryana

as crop residue burning is common there.

Figure A4 depicts the total negative loss (i.e., the total number of infant deaths averted) of

optimal allocations of interventions for various levels of the budget constraint and 3 different types

of treatment evaluated by Jack et al. (2022). The marginal change in infant lives saved per additional

USD 114,975 is shown in figure A5. The marginal impact for all treatments falls sharply for the first

several millions of dollars and then continues to decline approximately linearly. This suggests that

there could be high gains from optimal targeting for very small budgets

Note that the results are only preliminary and incomplete largely due to the current unavailability
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if the individual-level data from Jack et al. (2022). Once these that becomes available, I extend this

analysis by relaxing the assumption of uniform costs of the intervention using the full model proposed

in section 4.

6 Reduced-form approach

Our main results presented above relied heavily on the accuracy of the air pollution transport

modeling. While this has the advantage in allowing us to estimate the impact of air pollution in

every location, it requires more intermediate steps (i.e., modelling each step in the chain: area

burned → pollutant mass emitted → PM2.5 concentration → infant mortality ). In this section, I

will apply an alternative approach that directly uses the empirical estimates of the effect of area

burned on infant mortality. Specifically, this more reduced-form approach is based on the results

of Pullabhotla et al. (2022) for the effect of an additional km2 burned area within a 30 km radius

on infant mortality in the downwind direction. The upwind and downwind areas are defined by

bisecting the disk with 30 km radius and the center in the birth location along the lines of longitude

and latitude into 4 sections of equal area (see figure A6). As expected, Pullabhotla et al. (2022) find

significant positive effects on infant mortality only for the burned area in upwind direction of the

birth location and no significant effects of the downwind direction.

We can use these results to compute the expected increase in infant deaths per an additional

area burned for each location in northwestern India. First, I form a grid of source locations with a

resolution of 0.1 latitude degree and compute the population within each quarter of a disk centered

at the source with radius 30 km.10 Then for each source location on the grid, the expected increase

in infant deaths per an additional burned hectare (Li) in location i is calculated as

Li =
∑
d

Nid · c · fid · βBA (11)

where Li is the expected increase in infant deaths per an additional burned hectare in location i, fid

is the relative frequency of historical monthly wind directions, Nid is population living in a quarter

10The population raster used for this computation is taken from CIESIN (2018) at 0.008333 degree resolution (≈ 1
km).

15



in the direction d within the 30 km radius of location i, c is the population share of infants (defined

as individuals under the age of one), and βBA is the effect of an additional hectare burned on infant

mortality.

The data source for the historical monthly wind direction is the NCEP reanalysis (Kalnay et al.,

1996) (using only the values for October and November from 1948 to 2022).11 The estimate of

βBA is taken from Pullabhotla et al. (2022, Extended Data Table 2, column (1), Upwind exposure,

post-birth) to be 1.06×10−5 per hectare (which is 0.00106 per km2). The value of c was set to

26
1210 based on the the estimated 26 million new births annually12 and the total population of 1,210

million from 2011 population census13.

Figures A7 and A7 show the map and histogram, respectively, of the expected infant deaths per

hectare of burned land for both approaches. The reduced-form approach clearly has higher mean and

variance which is likely a consequence of the fact that in the reduced-form approach the air pollution

does not effect locations farther than than 30 km from the source whereas the HYSPLIT average

dispersion approach allow for more realistic dispersion. Nevertheless, it is somewhat reassuring

that the mean effects for both approaches are roughly of the same order of magnitude despite the

differences in the methods.

7 Conclusion

In this paper, I proposed how to optimally target interventions to reduce crop residue burning in

order to minimize the total harm caused by the created air pollution. The preliminary results I

presented suggest that there could potentially be meaningful efficiency gains from targeting the

interventions optimally, especially for relatively small budgets. Nevertheless, there remains much

work to be done in future research. Firstly and most importantly, the full analysis proposed in this

could not be executed since the individual-level data from Jack et al. (2022) were not yet published.

Secondly, there are rather purely technical improvements that could strengthen the credibility of the

results. This includes increasing the number of source locations, simulating more emission events

11In particular, the variables vwnd.10m.mon.mean.nc and uwnd.10m.mon.mean.nc were downloaded from https:

//downloads.psl.noaa.gov/Datasets/ncep.reanalysis/Monthlies/surface_gauss/
12https://nhm.gov.in/index1.php?lang=1&level=2&sublinkid=819&lid=219
13https://www.census2011.co.in/
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and using meteorological data with greater resolution. Finally, there are possible new directions

in which to extend this project could be extended. There are other sources of biomass burning

such as forest fires and slash-and-burn agriculture, which are at least partially caused by human

activity (Balboni et al., 2021). The modelling framework I developed could be applied with some

modifications to these problems as well to better understand the costs and benefits of possible

interventions in different regions of the world.
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A Appendix

A.1 Description of HYSPLIT simulations

In general, I tend to follow the setup and the parameters of Henneman et al. (2019), nevertheless

I deviate from their approach in certain aspects, which I will describe below, due the differences

in goals (Henneman et al., 2019 aim to estimate exposure to actual historical pollution from coal

power plants whereas I am interested in counterfactual exposure) and context (coal power plants in

the US vs. crop residue burning in India).

As mentioned in section 3, I estimate the source-receptor matrix by averaging the source-receptor

concentration estimates across emission events. An emission event proceed as follows: An unit mass

of pollutant is released from each source at the height 7.5 meters. The 121 source locations were

spread over a regular rectangular grid with latitude ranging from 40° to 45° and longitude from 78°

to 70°. The HYSPLIT model then tracks the dispersion of 2500 air parcels for each sources (this

number was chosen to balance the fidelity and computational demands of the simulations) for 4 full

days (96 hours). The emission event length of 4 days was chosen based on the results of Pan et al.

(2013) who measured that the approximate atmospheric lifetime of carbonaceous aerosols from crop

residue burning is 1 to 6 days. The source-specific concentrations were calculated for each location

on a grid with a resolution 0.05° of latitude and longitude. The concentration grids were averaged

over the emission events to produce a single grid of the mean concentrations for each source location.

These resulting grids formed our final estimate of the source-receptor matrix.

The start dates for the emission events were either 9 AM on October 1 or 9 AM on October 20

both for years 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2015, 2016, and 2017 (hence 20 emission

events in total). I used the NCEP reanalysis (Kalnay et al., 1996) for historical meteorological data

mainly due to its global coverage, long temporal coverage, and decent resolution.
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A.2 Reformulation to knapsack problem

In case of linear loss function and binary intervention, we can reformulate the model as a canonical

knapsack problem. First, let us first denote

b0i = b̂i(si = 0, xi)

and

b1i = b̂i(si = s̄T , xi)

therefore we can express bi(si, xi) as

bi(si, xi) = b1i · 1
(
si = sT

)
+ b0i .

By plugging this into the objective function and dropping the linear terms that do not depend on

si and all the scaling terms, we get

argmin
si∈{0,s̄T }

=
∑
j

∑
i

NjSRMij lib
1
i · 1

(
si = sT

)

Since maximization of the negative of a function is equivalent to minimzation of the original function,

we can write

argmax
si∈{0,s̄T }

=
∑
i

∑
j

(−1)NjSRMij lib
1
i · 1

(
si = sT

)
If we denote the values to be vi =

∑
j(−1)NjSRMij lib

1
i , the weights to be wi = s̄T li and binary

treatment to be ti = 1
(
si = sT

)
, we arrive at the canonical formulation of the knapsack problem:

argmax
si∈{0,s̄T }

=
∑
i

vi · ti

subject to ∑
i

wi · ti ≤M

For linear loss and finite discrete interventions, it can be easily shown that the multiple knapsack
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formulation can be obtained by simply including the additional interventions as new items and by

imposing new constraints requiring only up to one intervention to be chosen in each location.

Table A1: Emission conversion parameters for rice paddy and PM2.5

Parameter Description Units Value Source

CY Crop yield (production per area) kg
ha 3774 GOI (2018, p. 150) 14

RC Residue-to-crop ratio unitless 1.5 Jain et al. (2014)
fDM Dry matter(DM) fraction of the crop unitless 0.86 Jain et al. (2014)
fCC Combustion completeness unitless 0.78 Lasko and Vadrevu (2018) 15

EF Emission factor for PM2.5
g
kg 6.26 Akagi et al. (2011)

14The average of crop yield for Punjab (4366) and Haryana (3181) in 2017-18 season was used since two states cover
the most of our area of interest.

15The average of values for complete burn (0.89) and partial burn (0.67) was used.
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Figure A1: PM2.5 dispersion from an illustrative emission event

(a) 0 to 12 hours after release

  70   75   80   85
  90

 25

 30

 35

 40

### test_conc ### 
Concentration  (/m3) averaged between     0 m and  2665 m

Integrated from 0900 06 Oct to 2100 06 Oct 19 (UTC)
TEST Release started at 0900 06 Oct 19 (UTC)

>1.0E-13 /m3
>1.0E-14 /m3
>1.0E-15 /m3
>1.0E-16 /m3

Maximum: 4.8E-13 /m3

Minimum: 6.7E-21 /m3

S
ou

rc
e 

   
 3

0.
00

0 
 N

  7
5.

00
0 

 E
fr

om
   

 1
0 

m

NGM  METEOROLOGICAL DATA

(b) 12 to 24 hours after release
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(c) 24 to 36 hours after release

  70   75   80   85
  90

 25

 30

 35

 40

### test_conc ### 
Concentration  (/m3) averaged between     0 m and  2665 m

Integrated from 0900 07 Oct to 2100 07 Oct 19 (UTC)
TEST Release started at 0900 06 Oct 19 (UTC)

>1.0E-13 /m3
>1.0E-14 /m3
>1.0E-15 /m3
>1.0E-16 /m3

Maximum: 1.1E-14 /m3

Minimum: 1.6E-21 /m3

S
ou

rc
e 

   
 3

0.
00

0 
 N

  7
5.

00
0 

 E
fr

om
   

 1
0 

m

NGM  METEOROLOGICAL DATA

(d) 36 to 48 hours after release
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Figure A2: Cropland and burned area in 2016
Note: The source of the burned area raster is MODIS MCD64A1 product and the source of the cropland
raster is MODIS MCD12Q1 product both at 500m resolution
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Figure A3: Expected infant deaths per hectare of burned land

(a) No interpolation (b) Bicubic interpolation

(c) Only burned areas in 2019 (with bicubic interp.) (d) Histogram of pixel values
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Figure A4: Total impact curve under linear loss (village-level)
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Figure A5: Marginal impact curve under linear loss (village-level)
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Figure A6: Schematic showing definition of up and downwind burned areas in Pullabhotla et al.
(2022)

Source: Extended Data Fig 2. in Pullabhotla et al. (2022)
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Figure A7: Comparison of HyADS and reduced-form approaches - map

(a) HYSPLIT average dispersion approach (HyADS) (b) Reduced-form approach

Figure A8: Comparison of HyADS and reduced-form approaches - histogram

(a) All pixels (b) Only pixels with burned land in 2019
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