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Motivation

• Air pollution (PM2.5, PM10) increases mortality
• Cities in North India typically rank among the lowest in the
world in air quality

• Crop residue burning is an important contributor during the late
fall

• Various interventions proposed to reduce residue burning such
as conditional payments to farmers

• This paper: Given limited resourced, which places should be
targeted for interventions to reduce air pollution?
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Overview

• Goal: Target the interventions into places where the greatest
impact can be achieved

• Modeling of two main aspects:
1. Harm

• On average, how much harm would additional emissions from a given
location cause?

• Depends on the weather patterns (wind direction, strength, etc.) and
spatial distribution of the population

• I will use an air pollution transport model (HYSPLIT) to estimate the
overall impact

2. Costs
• How much we would have to spend to reduce the pollution in a given
location
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Modeling air pollution transport

• HYSPLIT dispersion model
• Hybrid Single-Particle Lagrangian Integrated Trajectory model
• One of the most extensively used atmospheric transport and
dispersion models in the atmospheric sciences

• Applications include tracking and forecasting the release of
wildfire smoke, wind-blown dust, volcanish ash, and crop residue
burning

• Main output of interest
• Source-receptor matrix: SRMij

• Fraction of emissions from source i that are transported into j
• Average over 5 days after release
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NGM  METEOROLOGICAL DATA

Contributions from the selected Source
Air Concentration  (mass/m3) averaged between 0 m and 100 m

Integrated from 0000 16 Oct to 1200 16 Oct 1995 (UTC)
C(R) Release started at 0000 16 Oct 1995 (UTC)
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NGM  METEOROLOGICAL DATA

Contributions from the selected Source
Air Concentration  (mass/m3) averaged between 0 m and 100 m

Integrated from 1200 16 Oct to 0000 17 Oct 1995 (UTC)
C(R) Release started at 0000 16 Oct 1995 (UTC)
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NGM  METEOROLOGICAL DATA

Contributions from the selected Source
Air Concentration  (mass/m3) averaged between 0 m and 100 m

Integrated from 0000 17 Oct to 1200 17 Oct 1995 (UTC)
C(R) Release started at 0000 16 Oct 1995 (UTC)
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NGM  METEOROLOGICAL DATA

Contributions from the selected Source
Air Concentration  (mass/m3) averaged between 0 m and 100 m

Integrated from 1200 17 Oct to 0000 18 Oct 1995 (UTC)
C(R) Release started at 0000 16 Oct 1995 (UTC)
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NGM  METEOROLOGICAL DATA

Contributions from the selected Source
Air Concentration  (mass/m3) averaged between 0 m and 100 m

Integrated from 0000 18 Oct to 1200 18 Oct 1995 (UTC)
C(R) Release started at 0000 16 Oct 1995 (UTC)
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Measuring the impact - definitions

• SRMij . . . fraction of emissions from source i that are
transported into j

• Ei . . . total air pollution emitted from location i
• Pj =

∑
i SRMijEi . . . total air pollution in i

• Lj = f(Pj) . . . loss (harm) to a single person from being exposed
to air pollution in j

• Nj . . . total population in j
• TL =

∑
j Lj · Nj . . . total population-weighted loss caused by air

pollution across all locations
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Measuring the impact

• The impact of small change emissions from i on total loss

∂TL
∂Ei

=
∑

j

∂Lj
∂Ei

Nj =
∑

j

∂f(Pj)

∂Pj

∂Pj
∂Ei

Nj =
∑

j

∂f(Pj)

∂Pj
SRMijNj

• if f(Pj) = a + b · Pj, this simplifies to

TL = b
∑

j
SRMijNj := b · αj

• Clearly, it is optimal to target locations with the highest ∂TL
∂Ei

since that will lead to greatest reductions in loss
• In case of linear f(Pj), this means locations with highest αj

• Some evidence to support linear effect of PM2.5 concentrations on
infant mortality (cite the Burke nature paper)
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Measuring the impact - extensions
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Preliminary results

• I focus on North-west of India where the air pollution is very
severe and crop residue burning is common

• I run simulations based on weather data for the beginning of
October for 10 different years

• Regular grid of 121 source location
• αj computed for each location separately, then interpolated across
across them on a finer grid

• Finer grid - only locations with winter cropping and
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Winter cropped area
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Total fire radiation power - October 2019
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Population exposure - full
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Population exposure - full - interpolated
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Population exposure - interpolated
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Population exposure - interpolated - histogram
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Conclusion

•
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Thank you for your attention.
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